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Single Station Tracking

Every Rocketeer asks the question: "How high did it
go?" However, previously few model rocketeers had the
facilities to determine altitudes with any reasonable
degree of accuracy. Some have attempted to find the
altitude achieved by their rockets by the use of a stop
watch, but this method is so highly inaccurate that the
computed altitude may fall anywhere within 200% of the
actual altitude. Several years of experience among
model rocketeers have proven that optical systems are
the only practical means for finding altitudes with any
reasonable degree of accuracy.

The use of an optical tracking system requires the
use of mathematics. The particular field of mathe-
matics which is used the most in altitude computation
is trigonometry. While this field is normally con-
sidered an advanced high school subject, any rocketeer
can master its basics and apply them to his rocketry
activities. If the rocketeer masters a few simple pro-
cesses, he is ready to solve almost any problem in
altitude computation.

One of the first principles of trigonometry is that
all of the angles and sides of any triangle can be
found if any three of its parts, including one side are
known. Now every triangle has six parts: three angles
and three sides. So if we know two angles and one side,
we can find the other angle and the other two sides.

In determining the height of a rocket we collect two
types of data: Distances and angles. This data is
used to create a triangle which is a model of the lines
which would join the tracker and the rocket, the rocket
and a point directly below it on the ground, and the
point on the ground and the tracker.

Fig.1

In the diagram above, point A represents the tracking
station, B the rocket at its maximum altitude, and C a
point on the ground directly below the rocket. The
angle formed by the lines at C is then a right angle or
90°, Since there are 180° in the angles of a tri-
angle, if we know angle A, we can find angle B, since
B =180° - (A +C), or B = 90° - A. (In trigonometry,
a capital letter represents an angle, a small letter
represents a side. The small letter "a" will always be
used to represent the side opposite angle A, "b" the

side opposite B, etc. Two capital letters together re-
present a distance. Thus BC represents the distance
from angle B to angle C, or side "a."

At the firing range, A is found by the tracker when
he locks his scope at the rocket's peak altitude. If
we now know the distance from A to C, or side b of the
triangle, we can find side c¢c and side a. Side a is the
one in which we are interested: It is the height of
the rocket. This of course assumes that angle C is a
right angle.

Now if we only use one tracker, we have the problem
of knowing only one angle and one side. This is not
enough information to solve the other sides of the tri-
angle. However, we can guess at one of the unknown
angles, and obtain a good approximation of the height
achieved by the rocket.

If only one elevation tracker is used, it is a good
idea to station it at a right angle to the wind flow.
For example, if the wind is blowing to the west, the
tracker should be either north or south of the launcher.
In this way we will keep the angle at C as close to a
right angle as possible. By experimenting with a pro-
tractor and a straight edge, the rocketeer can demon-
strate why the error would be less if the tracker is on
a line at a right angle to the flow of the wind.
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In the diagram above, the wind is blowing from B to
D. The rocket is launched at point C, weathercocks
into the wind, follows approximately line CA, and at
its maximum altitude is at point A. If the tracker is
downwind from the launcher, he will see the rocket at
point F, and compute the altitude as the distance from
C to F. So his computed altitudes will be considerably
lower than the true altitudes. On the other hand, if
the rocket drifts toward him, his computed altitude will
be considerably higher than the true altitude.

However, if the tracker is at point X in figure 3
and the launcher at Y, then the rocket will appear to
be at point A as in figure 1, although the distance
from the tracker to point A will be slightly greater
than the baseline used in computing the altitude, the
error will not be nearly as great. Also, the small
additional distance will serve to make altitude readings
more conservative, as the baseline will be increased.



Fig. 3

So by observing the proper relation between wind
direction and the position of the tracker, we can gen-
erally determine with 90% or better accuracy the al-
titude the rocket reaches from data given by only one
elevation tracker. Of course, the closer the rocket
flight is to the vertical, the more accurate will be
the figures obtained. Thus on a calm day with a good
model, we can approach almost perfect accuracy.

The method used to determine altitude with one tracker
is outlined below. Bear in mind that this system as-
sumes that the flight will be almost vertical, if not
completely vertical. The rocketeer would do well to
master this system before going on to more complex
systems, as this method is used as a part of the more
involved procedures.

Fig. 4

If we assume that the rocket flight is vertical, we
can call angle C a right angle (90°). In that case, B
is equal to 90° - A (the sum of the angles in a triangle
is 180° half of this or 90° is taken by angle C). Then
to find the distance from CtoB or the height the rocket
reached we take the tangent of angle A (abbreviated tan)
times the distance from the tracker to the launcher

(side AC of the triangle>. For example, if the distance
from the tracker to the launcher (baseline) is 250 feet
and the angle observed by the tracker at the rocket's
maximum height is 62°, we will look in the table of
trigonometric functions and find the tangent of 62°, The
tangent in this case is 1.88, so we multiply 1.88 times
250 to find our altitude, which is 470'. Altitudes for
model rockets are normally rounded off to the nearest
ten feet, If the calculated altitude had been 332 feet
we would have rounded it off to 330 feet.

Why do we use the tangent to determine altitude? The
tangent of an angle is the ratio of the opposite side
to the adjacent side, or in other words, the opposite

side divided by the adjacent side. In this case, the
adjacent side is the distance from the tracker to the
launcher, and the opposite side is the distance from the
launcher to the rocket's maximum altitude.

Kind souls of many years ago were nice enough to de-
termine the tangents for all angles of right triangles,
so we have a table which lists them. Since the tangent
of the angle equals the opposite side divided by the
adjacent side, or in the case of our first example, 470
divided by 250, by multiplying the quotient times the
divisor we find the dividend. In our case, the quotient
or tangent is 1.88, the divisor 250, and the dividend
470.

Summary

(1) In single station elevation tracking, we make sure
that the line from the tracking station to the launcher
is 90° from the direction of wind flow.

(2) The angle of flight is assumed to be vertical.

(3) The tracking scope is locked at the rocket's maxi-
mum altitude, the angle read, and the tangent of the
angle found.

(4) The tangent is multiplied times the distance from
the tracker to the launcher, giving the rocket's al-
titude.

Two Station Tracking

A higher degree of accuracy is possible when two
elevation tracking stations are employed. In such a
case, we will have triangles with 2 angles and one side
given, enabling us to determine the other parts of the
triangle without guesswork.

When using two trackers without azimuth readings
the tracking stations are set up on opposite sides of
the launcher. Preferably, to obtain the greatest ac-
curacy, the stations should be in line with the wind,
unlike the system used in single station tracking.
Thus, if the wind is blowing to the south, one station
will be north and the other south of the launch area.

The distance between the two trackers is not criti-
cal. One might be 100 feet from the launcher and the
other 500 feet away. However, for the greatest ease in
data reduction, the distances should be equal. For the
greatest accuracy, they should be as far apart as pos-
sible. A general rule is that the distance from the
stations to the launcher should be equal to or greater
than the maximum altitude the rocket is expected to
achieve.

Some provision should be made to insure that the
trackers lock their instruments at the same time. This
is one of the greatest problems with any system using
more than one station: The one tracker may lock his
scope when the rocket appears to him to have ceased
rising while the other tracker is still following the
rocket. If a phone system is used, one of the trackers
or a third party should call "mark," and the trackers
should lock their scopes immediately. In the system
described here this is especially important, as the
elevation readings from the two trackers must be taken
at the same point or the altitude computed will be
somewhat incorrect.

In this more accurate system we will work with sines
instead of tangents. To determine altitude, then, we
will first have to find the unknown sides of the tri-
angle, as we have no right angles to work with.

For example, stations A and B are located on a 1000'
baseline with the launcher between them. Station A
calls in an elevation of 34°, and station B calls in an
elevation of 22°. The total of these two angles is 56°,
so angle C, located at the peak of the rocket's flight,
is equal to 180° - 56°, or 124 degrees. We now have 3
angles and one side to work with. Our first step will
be to list the angles and their sines. Since the sine



Fig. 5

of any angle greater than 90° is equal to the sine of
the supplement of the angle, the sine of 124° is equal
to the sine of 180° - 124°, or 56°.

Angle A = 34° Sine A = ,5592
Angle B = 22° Sine B = .3746
Angle C = 124° Sine C = ,.8290
The law of sines states that =——s = b —
SinC SinB SinA
1000 b

- ' i - =
c = 1000', sinC = .8290 Therefore, ~8290 - 3746 =

-3§§§ Pulling out the slide rule, we determine that

gggz = 1205. So we have a dividend, divisor, and quo-

tient. In solving for side b, our dividend is b, our
divisor .3746, and our quotient 1205. To find the div-
idend we multiply the divisor times the quotient. Now
3746 times 1205 = b, and pulling out the slide rule
again, we find that b = 451. The same process is re-

peated to find side a: 1205 = ﬁ, a = 1205 x .5592,
a = 674'. So we now have the three sides of the tri-
angle.
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The altitude of the rocket is then the distance from
C to D in the diagram above. The angle formed by the
meeting of lines AB and CD is a right angle. Since the
sine of an angle in a right triangle is the relation of
the opposite side to the hypotenuse, and since we wish
to determine the value of the opposite side, we find
that the sine of A (34°) is ,5592. Hence .5592 = Z%T’
since SinA = SBROSite side = 554, 45 . 253, hence

hypotenuse

CD = 252', and we now know the altitude reached by the
rocket was 252',

Fortunately, our computations to determine the al-
titude of the rocket can be simplified. To find the
altitude we need only determine one of the unknown sides
of the original triangle. So if we find the distance
BC (side a) on the triangle, we can multiply it times
the sine of B to find the height CD.

c a ; c
So SinC - Sind’ Since we have found SinC equal to

1205 when C = 124°, =—2— - 1205. Then 1205 x SinA=
SinA

side a = 674'. Now we have the one needed side of the
triangle, so we can solve for distance CD in the right
triangle BCD, The sine on an angle is equal to its
opposite side divided by the hypotenuse, so we take the
sine of B, which is .3746, times the hypotenuse, or 674'
to find the opposite side CD. Thus .3746 x 674 = 252°',

The complete series of computations then would be

£ x SinA = a, and a x SinB = CD. However, if we can
SinC

combine the formulas to make one formula, we can speed

; c . _
up our work considerably. Now Sinc X SinA = A, so we

can substitute the expression (gf%a x SinA) for a in
the formula a x SinB = CD. Our formula then becomes
Sioc X SimA x SinB = CD. One of the basic rules of
algebra tells us that if the dividend is multiplied by
a number and the result divided by the divisor, the
result is the same as if the division were carried out
first and the quotient multiplied by the number. For

10 x 4 10 _
5 = 8, and 5 X 4 = 8.

So we can change the expression §f%E x SinA x SinB =

CD to read £_§_§%§%E§_§£E§ = CD. So by performing two
multiplications and one division, we can find the al-
titude of the rocket. The division of SinC into the
expression (¢ x SinA x SinB) can occur at any point, as
c x SinA . SinA x SinB _
—sinc X SinB = CD, and c X —gisC _ ° CD also.
This last form of the equation will give the same re-
sult as the first, and actually involves the same steps,
but is generally easier to use.

example,

Summary

(1) In two station tracking without the use of azimuth
readings we station the trackers on a base line approx-
imately equal to twice the altitude the rocket is ex-
pected to reach.

(2) The trackers are located in line with the wind.

(3) The scopes are locked at the rocket's maximum al-
titude, the angles read, and the sines of the angles
found.

(4) The altitude is computed by the formula height =
£x ol X i blsn:ncx S:l.nB’ when A and B are the angles read by
the trackers, c¢ is the baseline distance, and C is the
third angle formed by the meeting of the lines of sight
of the two trackers.

Sines and Tangents

sin | tan | / sin | tan / sin | tan

.02 .02 28 .47 .53 54 .81 1.38
.03 .03 29 .48 .55 55 .82 1.43
.05 .05 30 .50 .58 56 .83 1.48
.07 .07 31 .52 .60 57 .84 1.54
.09 .09 32 .53 .62 58 .85 1.60
.10 .11 33 .54 .65 59 .86 1.66
.12 .12 34 .56 .67 60 .87 1.73
.14 .14 35 .57 .70 61 .87 1.80
.16 .16 36 .59 .73 62 .88 1.88
10 .17 .18 37 .60 .75 63 ,89 1.96
11 .19 .19 38 .62 .78 64 .90 2.05
12 .21 .21 39 .63 .81 65 .91 2.14
13 .22 .23 40 .64 .84 66 .91 2.25
14 .24 .25 41 .66 .87 67 .92 2,36
15 .26 .27 42 .67 .90 68 .93 2.48
16 .28 .29 43 .68 .93 69 .93 2.61
17 .29 .31 44 .69 + 97 70 .94 2,75
18 .31 .32 45 .71 |1.00 71 .95 2,90
19 .33 .34 46 .72 |1.04 72 .95 3.08
20 .34 «36 47 .73 |1.07 73 .96 3.27
21 .36 .38 48 .74 |1.11 74 .96 3.49
22 .37 .40 49 .75 |1.15 75 .97 3.73
23 .39 .42 50 .77 |1.19 76 .97 4.01
24 .41 .45 51 .78 [1.23 77 .97 4.33
25 .42 .47 52 .79 |1.28 78 .98 4,70
26 .44 .49 53 .80 |1.33 79 .98 5.14
27 .45 .51 80 .98 5.67
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For angles of 81° through 89° the sine is .99, the sine
of 90° is 1.00. Tangents over 80° are not given, as
no sensible data reduction is possible for angles that
great.



