The Astron Scout Rocket consists of the following parts as illustrated in the drawing at right:

1. Nose cone cat # 161-RN-1
2. Body tube cat # 161-BT-3
3. Three fins cat # 161-BF-1
4. Motor hook (music wire) cat # 161-MH-1
5. Motor retaining wire (copper) cat # 161-RW-1
6. Reinforcing material for fins and motor hook wire cat # 161-WR-1
7. Launching lug cat # 161-LL-1

For assembling your rocket you will need a sharp knife or razor blade, a small piece of fine grit sandpaper, a tube of extra fast drying model airplane cement, and a pair of scissors.

Check to make sure your kit is complete. Read complete instructions, steps two through eight before beginning.

1-2. Fitting the nose cone. Apply quick drying model airplane cement to upper 3/8" of body tube (end with the holes) and to lower part of nose cone. Fit pieces together immediately upon application of glue. Wire off excess glue.

3. Applying the fins. Glue the fins just to the right side of the fin guide marks on the body tube. This will position the fins directly in line with the pressure relief holes. Carefully align the fins so they exactly follow the guide marks provided on the body tube and are positioned as shown in the bottom view drawing. The fins should set as far to the rear of the rocket as possible as shown in the side view drawing.

4. The motor catching hook. The motor catching hook extends from near the forward end of the body tube to approximately 1½" beyond the rear of the body tube. To install, first punch the long 90 degree end of the motor catching hook through the small hole at the upper end of the body tube into the balsa nose cone. Be careful to punch this hole straight into the nose cone so that the small end can be positioned pointing toward the center axis line of the rocket. See (4) bottom view drawing. Next, work a small amount of glue into this hole. Then apply glue to the body tube along the line where the wire will be secured. Immediately place the wire in position, being sure it is running exactly parallel to the body tube and is securely against it. Wire off excess glue.

5. The motor retaining wire. Glue the small copper motor retaining wire along the body tube, leaving 3/8" projecting beyond the rear end of the body tube.

6. Applying the gauze reinforcing. The gauze reinforcing is a must if you are to get many flights from your rocket. First, cut all pieces from the gauze strip, closely following the lines. Then apply the three fin reinforcements, one at a time, in the following manner.

A. Apply glue over the area to be reinforced.
B. Quickly spread the glue evenly with your finger and then apply the gauze with the narrow end forward.
C. Smooth the gauze evenly till free from all wrinkles. (If the gauze projects beyond the edges of the fins or back of the tube, it may be trimmed after drying thoroughly.)
D. Immediately apply a coat of glue over the gauze and spread evenly and smoothly with your finger. Be sure the gauze fits tightly into all corners and over wires as closely as possible to provide maximum strength. After all 3 fin reinforcements have been completed, apply the long motor hook reinforcement covering the entire attached part of the motor hook wire. This double reinforcement is necessary over the rear of the motor hook wire since considerable stress is applied to this joint when the motor is put into or removed from the rocket. Next, apply successive coats of glue over all reinforcements until the holes in the gauze have been filled with glue and the surface is smooth. Two or three coats should be adequate. Be sure to smooth each coat thoroughly, using your finger. Allow a few minutes between coats for drying. (For the more experienced, better equipped modeler, the gauze reinforcements may be applied using clear dope and a brush. This method requires a longer drying time.) After the glue has thoroughly dried, trim off all excess gauze.

7. The launching lug. The launching lug should be thoroughly glued into the corner made by a fin with the body tube as shown in the drawing. Be sure the lug is alligned with the body tube so the rocket will be launched in a vertical direction.

8. Finishing. Sand the forward and outer edges of fins till rounded. Sand the nose cone and remaining surfaces until smooth. Then coat with dope, sand, and paint your rocket according to standard modeling procedures. Remember in finishing your rocket, the smoother the finish the less wind drag, and the better the rocket will fly.
Most model rockets require parachutes, streamers, or other drag members to break their aerodynamic stability during their descent. These systems usually work well but they have some disadvantages. Parachutes and streamers add unnecessary weight and bulk. If the wind is blowing, a parachute rocket will end up a long way from the launch area. If trees are present anywhere at this point which returns in two pieces connected with a string is likely to end up 40' off the ground looking like a fancy bird's nest.

The ASTRON SCOUT is radically new in its design. Although, off hand, it would seem impossible to make a rocket fly upward and then refuse to fly down again, it can be done. This is where the ASTRON SCOUT differs from most rocket models. It flies upward and then goes tumbling down on its nose. In one instance, a parachute to carry with the wind or catch in a tree. Carefully read the enclosed technical report, No. TR-1. Then read the following paragraphs. You will not only learn how this rocket does the "impossible", but you will also learn one of the most important principles of all rocketry, large or small, regardless of the type of recovery system employed.

The ASTRON SCOUT rocket is designed so that, in flight, the motor sets forward against the nose cone. With the motor in this position, the center of gravity is approximately 5/8" ahead of the center of pressure. According to the principles outlined in Technical Report, No. TR-1 your rocket will be stable and fly straight. When the rocket reaches its peak altitude, an ejection charge, built into the motor, is activated. This pressurizes the forward end of the rocket body and forces the expended motor casing rearward. The motor casing is caught by the motor catching hook and held in this rear position. It is necessary for the center of gravity rearward-approximately 3/4" so that the center of gravity is now behind the center of pressure. With the center of gravity behind the center of pressure the rocket cannot fly and will return, in a tumbling fashion, to a soft landing.

If you do not understand this principle your rocket will still perform correctly. If you do understand it, you have learned one of the most important principles of all rocketry and should be able to begin designing your own rockets.

FLYING YOUR ROCKET: The best place to fly your rocket will be on a model rocket range. Most ranges are set up with a 24"x60"x60" box of sand. Some of these clubs are members of the National Association of Rocketry, a nonprofit organization, which has set up contest and safety rules used throughout the country. Perhaps you may wish to join one of these clubs. If there isn't one in your area you may wish to get a few of your friends together and start one. To find out what club may already be operating in your area, write to the National Association of Rocketry, Suite 1965-65, 11 W. 42nd St., New York, N.Y. If you do not belong to a club and no model rocket range is available it is best to select a place, free of trees and houses, that is large enough in which to recover your rocket. Since the ASTRON SCOUT lands harder than some rockets it will be particularly ideal if the area is covered with grass. Lancing your rocket on too hard a surface will quite often result in the breaking of a fin. Broken fins can be replaced, however, and your rocket will be as good as new. If possible, the place you select to fly your rocket should be away from persons who are not participating or watching the rocket launching. Also, a model rocket should not be flown in high winds or in the vicinity of flying aircraft.

REPLACING THE MOTOR: After each flight of the ASTRON SCOUT the expended motor must be removed and replaced with a new one. To remove the motor, spring the motor catch hook out of the way and pull the motor out before releasing the hook. Next, be sure the paper cap ejected from the old motor is removed. Check to make sure the rocket body is free from debris and residue build up. After you have flown your rocket several times a deposit of ejection charge residue may build up on the inside of the rocket body. If this deposit becomes excessive it may interfere with the proper fit of the motor. You can remove this deposit by scraping with a knife blade or similar object.

When the new motor is being installed in the rocket body check to be sure it is loose enough to easily slide forward against the nose cone. With the motor resting against the nose cone you should be able to expend it by firmly shaking your rocket. DO NOT FIRE YOUR ROCKET IF YOU CANNOT DO THIS.

Before the ASTRON SCOUT rocket is put on the launch pad, be sure the motor is installed in the rocket body with the nozzle end of the motor even with the rear of the body. The motor is retained in this position by bending the retaining wire over the end of the motor. Upon ignition, the thrust of the motor will move it forward against the nose cone. It will stay there until the ejection charge forces it rearward at the apex of the flight.

MOTORS: The ASTRON SCOUT model rocket is designed to be flown only with motors manufactured by Estes Industries. The weight distribution (center of gravity-center of pressure relationship) of this rocket is very critical and other types of motors will not work. The types recommended are the JA, B-2-3M, A-8-3M, A-8-4M, and the A-8-4B. They will all perform satisfactorily. You should be able to get about 420' using the JA motors and over 1200' from the B motors. Caution: For beginners and those limited to small flying fields, the JA motor is the best. A small rocket 1200' up is awfully difficult to see and may come down several hundred feet from the launch point. Learning to fly your rocket with the smaller motors then go to the larger ones. This way you will lose fewer rockets.

FIRING YOUR ROCKET: Much greater realism and safety are possible by firing your rocket electrically. To add to the realism, a count down is usually given: 5---4---3---2---1---FIRE. The firing switch is depressed at the proper time so the rocket instantly zooms forward at the word FIRE. If a group is present, a count down is a must in order for the others to know when the rocket is going to be launched.

For launching you may construct a firing system of your own design, or you may order one from Estes Industries or from the store where you purchased your rocket. The launching rail for the ASTRON SCOUT must be at least 18" long.

STORING YOUR ROCKET: In dry climates you need pay no special attention to the storing of your rocket. Just set it up on a shelf. In extremely humid climates it will be necessary to keep the rocket from moisture. It should always be kept in a closed box. You are storing your rocket for a long period of time under extremely high humidity. It should be dried thoroughly and placed in a tightly closed polyethylene bag. The residue which builds up on the inside of the rocket body is extremely hygroscopic. It will become wet if exposed to excessive humidity.
ASTRON SCOUT

Kit No. K-3

Only 70¢

CLIMBS TO OVER 1000'
A "MUST" FOR BEGINNERS!
The Astron Scout Rocket Kit consists of the following parts as illustrated in the drawing at right:

1. Nose Cone
2. Body Tube
3. Finning Sheet
4. Motor Hook
5. Motor Retaining Wire
6. Gauze Reinforcement Material
7. Launching Lug

For assembling your rocket you will also need a sharp knife or razor blade, a piece of fine grit sandpaper, fast drying model glue or cement, a sharp pencil, and a pair of scissors.

Check to be sure your kit is complete. Then read the complete instructions step one through eight, before beginning construction.

1. FITTING THE NOSE CONE: Apply glue to the upper 3/8" of the body tube (end with the holes) and to the lower 3/8" mating surface of the nose cone. Fit the pieces together immediately after application of the glue. Wipe off any excess glue.

2. MARKING THE TUBE: Before the fins are glued to the body it will be necessary to mark the tube to position the fins equally around its circumference. To do this, center the lower end of the body exactly on the bottom view drawing below. Turn the tube so that the small (1/4") hole at the top of the tube is exactly over the catch hook position, indicated on the drawing by (4), with the large hole over the opposite (lower right hand in the drawing) fin. Using a sharp pencil, mark the tube base exactly on the outside edge of the fin (5) in the drawing. The two works for each fin should be 3/16" apart if this has been done correctly. If this step is carried out properly, the motor hook (4) will fall exactly between two of the fins on the rocket.

3. ATTACHING THE FIN: Apply a light coating of glue to one end of one fin and press this end of the fin to the body between two of the marks made in step 2. One side of the fin should then be exactly on one mark, the other side on the other. Align the fin by sighting down the body from the top and adjusting the fin until it is exactly in line with, and parallel to, the center axis of the body. This must be done carefully or the performance of the rocket will be impaired. Repeat this procedure with the other two fins, being careful not to move the previously attached fins out of line. Do not set the rocket on the fins or apply any pressure to them until the glue has dried.

4. THE MOTOR CATCH HOOK: The motor catch hook extends from near the forward end of the body tube to approximately 1/2" inch beyond the rear of the body tube. To install, first punch the long 50 degree end of the motor hook through the small hole at the upper end of the body tube into the balsa nose cone. Be careful to punch this hole straight into the nose cone so that the small end can be positioned to point directly to the center axle of the rocket as at (4) in the bottom view drawing. Next, work a small amount of glue into this hole. Then apply glue to the body tube along the line where the wire will be secured. Immediately place use wire in position, being sure it is running exactly parallel to the body tube and is securely against it. Wipe off any excess glue.

5. THE MOTOR RETAINING WIRE: Glue the small copper motor retaining wire along the body tube, leaving 3/8" inch of its length projecting beyond the rear end of the body tube.

6. APPLYING THE GAUZE REINFORCEMENT: The gauze reinforcing in assembly of your rocket is to be flown more than once or twice. First, cut all pieces from the gauze strip, closely following the lines. Then apply the three fin reinforcements, one at a time, in the following manner:
 A. Apply glue over the area to be reinforced.
 B. Quickly spread the glue evenly with your finger and then apply the gauze with the narrow end forward.
 C. Smooth the gauze evenly until it is free from all wrinkles. (If the gauze projects beyond the edge of the fins or back of the tube, it may be trimmed after drying thoroughly.)
 D. Immediately apply a coat of glue over the gauze and spread evenly until smooth with your fingers. Be sure the gauze fits tightly into all corners and over wires as closely as possible to provide maximum stress.

After all three fin reinforcements have been completed, apply the long motor hook reinforcement covering the entire attached part of the motor hook wire. This double reinforcement is necessary over the rear of the motor hook since considerable stress is applied to this joint when the engine is put into or removed from the rocket. Next, apply successive coats of glue over all reinforcements until the holes in the gauze have been filled with glue and the surface is smooth. Two or three coats should be adequate. Be sure to smooth each coat thoroughly, using your fingers. Allow a few minutes between coats for drying. (For the more experienced equipped modeller, the gauze reinforcements may be applied using clear dope and a brush. This method requires a longer drying time.) After the glue has dried thoroughly, trim off all excess gauze.

7. THE LAUNCHING LUG: The launching lug should be thoroughly glued into the corners made by a fin and the body tube as shown in the drawing. Be sure the lug is aligned with the body tube so the rocket will be launched in a vertical direction.

8. FINISHING: Send the forward and outer edges of the fins until rounded. Sand the nose cone and remaining surface until smooth using sandpaper, sand again with very fine grit sandpaper, and paint your rocket according to standard modeling procedures. When finishing your Astron Scout remember that the smoother the finish, the less wind drag, and the better the rocket will fly.
Most model rockets require parachutes, streamers, or other drag devices to break their aerodynamic stability during their descent. These systems usually work well, but they have some disadvantages. Parachutes and streamers add unnecessary weight and bulk. Unless the wind is favorable, a parachute will end up a long way from the launch area. In rare cases where the rocket, which is only 5 feet off the ground, is moving away from the gust, a parachute may interfere with the proper flight of the engine. You can remove this deposit by scraping with a knife blade or similar object.

When the new engine is being installed in the rocket body, check to be sure it is loose enough to easily slide forward against the nose cone. With the engine resting against the nose cone you should be able to expand it by firmly shaking your rocket. DO NOT FIX YOUR ROCKET if you can not do this.

The Astron Scout rocket is designed so that, in flight, the engine site forward against the nose cone. As with the 1/4A, this position, the center of gravity is approximately 5/8th of the center of pressure. According to the principles outlined in Technical Report TR-1, your rocket will be stable and fly straight.

When the rocket reaches its peak altitude, an ejection charge, built into the engine, is activated. This pressurizes the forward end of the rocket body and forces the expended engine casing rearward. The engine casing is caught by the motor catch hook and held in the rear of the engine. The engine casing then removes the center of gravity rearward approximately ¼ inch so that the center of gravity is now forward of the center of pressure. With the center of gravity forward of the center of pressure, your rocket will fly straight and will return, tumbling, to a soft landing, since the wind drag on an unstable object is extremely high.

If you do not understand this principle your rocket will still perform correctly. If you do not understand it, you have learned one of the most important principles of all rocketry and should be able to begin designing your own model rockets.

FLYING YOUR ROCKET: The best place to fly your rocket will be on a model rocket range. Most ranges are set up by organized groups of rocket enthusiasts. You will find that the members of these clubs are usually willing to help beginners start a rocket club. To obtain a copy, send a stamped, self-addressed envelope to Estes Industries.

If you do not belong to a club and have no model rocket range available, it is best to select a place, free of trees and houses, that is large enough from which to recover your rocket. Generally such a location should have you have learned some of the important principles of all rocketry and should be able to begin designing your own model rockets.

LAUNCHING YOUR ROCKET: Much greater realism and safety is possible by launching your rocket electrically. To add to the realism, a count down is usually given: "5 - 4 - 3 - 2 - 1 - FIRE." The launch switch is depressed at "FIRE," and in a fraction of a second the rocket is zooming upward. If a group is present, a count down is a must in order for the others to know when the rocket is going to be launched.

LAUNCHING THE ENGINE: After each flight of the Astron Scout the expended engine must be removed and replaced with a new one. To remove the engine, spring the motor catch hook out of the way and pull the engine out of the engine case before releasing the hook. Next, be sure the paper cap ejected from the old engine is removed. Check to make sure the rocket body is free of debris and residue build up. After you have flown your rocket, be sure that the electrical charge residue may build up on the inside of the rocket body. If this deposit becomes excessive it may interfere with the proper flight of the engine. You can remove this deposit by scraping with a knife blade or similar object.

When the new engine is being installed in the rocket body check to be sure it is loose enough to easily slide forward against the nose cone. With the engine resting against the nose cone you should be able to expand it by firmly shaking your rocket. DO NOT FIX YOUR ROCKET if you can not do this.

Before the Astron Scout rocket is put on the launch pad, be sure the engine is installed in the rocket body with the nozzle end of the engine even with the rear of the body tube. The engine is guided in this position by bending the retaining wire over the end of the engine. Upon ignition, the thrust of the engine will move it forward against the nose cone. It will fly thusly, until the static charge forces it rearward at the apex of the flight.

ENGINES: The Astron Scout model rocket is designed to be flown only with Series I and II engines manufactured by Estes Industries. The weight distribution (center of gravity) of this rocket is very critical and other types of engines will not work. The types recommended are the 1/4A, 1/2A, 2/5A, 1/8A, 1/16A, and 1/32A. They will all perform satisfactorily. You should be able to reach about 400 feet using the 1/2A engine and over 1200 feet with the B engines. CAUTION: For beginners and those limited to small rockets, engines with a burn time of less than 20 seconds are probably the best. A small rocket 1200 feet up is very difficult to see and may come down several hundred feet from the launching point. The smaller engines will lift a rocket with the smaller engines before going to the larger ones. This way you will lose fewer rockets.

STORING YOUR ROCKET: In dry climates you need pay no special attention to the storing of your rocket. Just set it up on a shelf. In extremely humid climates it will be necessary to protect your rocket from moisture. It should always be kept in a dry place. If you are storing your rocket for a long period of time, wrap it in aluminum foil. The rocket should be dried thoroughly and placed in a tightly closed polyethylene bag. The residue which builds up on the inside of the rocket body is extremely hygroscopic, and will become damp and sticky if exposed to excessive humidity.
ESTES

Astron SCOUT

EASY TO BUILD
EDUCATIONAL

70¢

SCOUT

KIT NO. K-1

SPECS

Length 30.0 in
Body Dia. .750 in
Weight 3.58 oz

RECOMMENDED ENGINES

TUMBLE RECOVERY
INFORMATION ABOUT THE ASTRON SCOUT

WHY IT WORKS

Most model rockets require parachutes, streamers or other drag members to slow their descent. These systems work well, but they also have some disadvantages. Parachutes and streamers add unnecessary weight and bulk. If the wind is blowing, a parachute rocket will end up on a long way from the launch area. If trees are present any rocket which returns in two pieces connected with a string is likely to end up 30 feet or more from the launch area, looking like a fairy land's nest.

The Astron Scout is radically different in its design. Although, at first thought, it might seem impossible to make a rocket fly on the way up and then refuse to fly down again, it can be done. This is where the Astron Scout differs from most model rockets. It flies up but then comes tumbling down, head over heels, in one piece with no parachute to carry with the wind or catch in a tree. Read the enclosed technical report (No. TR-1) carefully. Then read the following paragraphs. You will not only learn how this rocket does the "impossible," but you will also learn one of the most important principles of all rockets, large or small, regardless of the type of recovery system used.

The Astron Scout is designed so that in flight the engine sits forward against the nose cone. With the engine in this position, the center of gravity is forward of the center of lift. According to the principles outlined in Technical Report TR-1, your rocket will be stable and fly straight.

As the rocket reaches its peak altitude, the ejection charge in the engine casing is activated by the extremely high gas pressure which raises the nose cone and forces the engine casing forward. The ejection charge is set by the catch hook and held in this reposition. This shifting of weight moves the center of gravity back about 3/4 inch so it is now behind the center of pressure. With the center of gravity behind the center of pressure the rocket cannot fly straight and returns, tumbling, to a soft landing, since the air drag on an unstable object is extremely high.

If you do not understand this principle your rocket will still perform correctly. If you do understand it, you have learned one of the most important principles of all rockets and should be able to begin designing your own model rockets.

WHERE TO FLY

WHERE TO FLY YOUR ROCKET: The best place to fly your rocket will be on a model rocket range. Most ranges are set up by organized groups of rocket enthusiasts. If there is no model rocket club in your area, you may wish to start one. Estes Industries has available a guide for starting a club containing information on launching and operating a model rocket club. To obtain a copy, send a stamped, self-addressed envelope to Estes Industries.

CHANGING ENGINES

REPLACING THE ENGINE: After each flight the expended engine must be removed. Spring the catch hook out of the way and pull the engine out before releasing the hook. Next, remove the paper can ejected from the old engine is removed. Make sure the rocket body is free of debris and residue build up. After you have flown your rocket several times a deposit of ejection charge residue may build up on the inside of the rocket body. If this deposit gets too thick it will interfere with the proper fit of the engine. You can remove this deposit by scraping with a knife blade or similar object.

CHECK NEW ENGINE FIT

When a new engine is installed in the rocket body it must be loose enough to easily slide forward against the nose cone. With the engine resting against the nose cone you should be able to expel it by shaking your rocket. DO NOT LAUNCH YOUR ROCKET if you can not do this. Before putting the Scout on the launch pad, be sure the nozzle end of the engine is even with the rear of the body tube. The engine is held in this position by bending the retaining wire over the end of the engine. At ignition the thrust of the engine moves it forward against the nose cone. It stays there until the ejection charge forces it rearward at the apex of flight.

CHOICE OF ENGINES

ENGINES TO USE: The Astron Scout model rocket is designed to be flown only with Series I and Series II engines manufactured by Estes Industries. The weight distribution (center of gravity — center of pressure relationship) of this rocket is very critical and other types of engines will not work. The types recommended are the 1/2D2, the 3A-3, the 6B-1 and the 6C-5. The model can also be flown with 1/4D3-2, A5-2, A5-4, B4-4, B6-6, B4-5 and C5-7 engines. CAUTION: For beginners and those limited to small flying field, the 1/2A and 3A engines are best. Larger engines will often take the model out of sight. Learn to fly and follow your model with the smaller engines before going to the larger ones. This way you lose fewer rockets.

LAUNCHING

LAUNCHING PROCEDURE: Always launch your model using a standard electrical system with a 1/8" diameter ground rod at least 30" long. For information on building a launcher, check the instructions which came with your engine. Follow the countdown procedure given below when flying to eliminate mistakes and to provide greater realism and safety.

COUNTDOWN CHECKLIST

☐ 1-2 Select an engine and install an electrical igniter as directed in the instructions which came with the engine.
☐ 1-3 Insert the engine into the body tube, making sure it slides easily. Bend the retaining wire to hold the engine in place.
☐ 1-4 Remove the safety interlock or key from the launch control panel. If a simple spring switch is used, install the protector on the switch to separate the contact. Carry the key or interlock on the person of the launch control officer.
☐ 1-5 Place the rocket on the launcher. Check to be sure the panel is disarmed. Clean the micro-switches and attach them to the igniter.
☐ 1-6 Clear the launch area, alert the recovery crew and the trackers.
☐ 1-7 Check for low flying aircraft and unauthorized persons in the launch and recovery areas before beginning the final countdown.
☐ 1-8 ARM the launch panel.
☐ 1-9 LAUNCH!

STORAGE

STORING YOUR MODEL: In a dry climate the rocket may be just set upon the shelf where it won't be knocked over or crushed. In humid climates it will be necessary to protect the rocket from moisture. It should always be kept in a dry place. If it is being stored for a long period under extremely high humidity it should be dried thoroughly and placed in a tightly closed plastic bag. The residue which builds up on the inside of the rocket body is hygroscopic and will become damp and sticky if exposed to excessive humidity.

5 4 3 2 1
LAUNCH!
PARTS LIST

Your Astron Scout model rocket consists of the following parts as illustrated in the drawing at right:

(A) 1 Nose Cone - Part #NC-100
(B) 1 Body Tube - Part #BT-040A
(C) 1 Engine Hook - Part #EH-1
(D) 1 Premix Fuel - Part #PF-003
(E) 1 Engine Retaining Wire - Part #ERW-1
(F) 1 Gauze Reinforcing Material - Part #GR-1
(G) 1 Body Tube Hang-Up Wire - Part #BT-020
(H) 1 Technical Report - Part #TR-1

In addition to the material included in your kit you will also need the following tools and supplies:

1) Matching knife or single edge razor blade
2) Scissors
3) Extra strong white glue
4) Ball point pen or pencil
5) Fine and extra fine grit sandpaper
6) White paint or dope

Read the entire assembly instructions carefully before beginning work on your rocket. Then start construction, following each step in order, checking off each step as it is completed.

PARTS LIST

1. INSTALL THE NOSE CONE: Apply glue to the upper 1/4" of the body tube (the end with the hole) and to the lower 1/4" of the mating surface of the nose cone. Fit the pieces together and wipe off any excess glue.

2. MARK THE TUBE: Cut out the body tube marking guide. Wrap it around the body tube with the hole locations on the guide lined up with the hole locations on the tube. Mark the body at each of the arrow points. Remove the guide and draw a straight line connecting each matching pair of front and rear marks as shown.

3. ATTACH THE FUNS: Apply a light coating of glue to one end of one fin and press this end of the fin to the body alongside one of the lines marked in step 2. Hold the fin in place so itSticks straight out from the body tube until the glue starts to stick, then repeat the same procedure with the other two fins. Then set the rocket on its fins or apply any pressure to them until the glue has dried.

4. MOUNT THE ENGINE CATCH HOOK: The engine catch hook extends from near the forward end of the body tube to about 1-1/2" beyond the rear of the body tube. To install, first punch the long bend end of the hook through the small hole at the upper end of the body tube and into the luna nose cone. Be careful to punch this hole straight into the nose cone so the wire goes through the centerline of the rocket as shown in the rear view drawing. Squeeze a small amount of glue into the hole and apply a line of glue to the body tube straight back from the hole where the main section of the hook will fit. Push the wire into position, being sure it is running parallel to the body and is securely against it. Wipe off any excess glue.

5. ATTACH THE ENGINE RETAINING WIRE: Glue the small copper engine retaining wire to the rear of the body tube so 3/8" of its length projects beyond the rear end of the body tube.

6. REINFORCE THE FUNS: The gauze reinforcing is necessary if your rocket is to be flown more than once or twice. First cut out sections 1, 2 and 3. Apply these, one at a time, in the following manner:

A. Apply glue over the area to be reinforced.
B. Quickly spread the glue evenly with your finger and then apply the gauze with the narrow end forward.

7. SECURE THE ENGINE HOOK: After all three fin reinforcements have been completed, cut out the long rectangular section of gauze. Apply this piece over the engine catch hook in the same manner as the fin reinforcements. Let all the glue dry for several minutes then apply until all the holes in the gauze have been filled with glue and the surface is smooth. Allow time for drying between coats. After the last coat has thoroughly dried, trim off all excess gauze.

8. INSTALL THE LAUNCHING LUG: Glue the launching lug into the comer made by a fin and the body tube. Be sure the lug is aligned with the body tube so the rocket will get a straight start.

9. FINISH YOUR RIDE: Sand the forward and outer edges of the fins until rounded. Sand the nose cone and remaining surfaces until smooth. Then coat all harness surfaces with sanding sealer, let dry and sand again with very fine sandpaper. Repeat this until all holes in the bodies are filled. Paint your model a bright color for easy visibility. Remember that the smoother the surface of the model, the higher it will fly.
Flying Model Rocket

Model: Scout

- Educational
- Easy to Build
- High Performance

Skill Level 1:
- 1-Engine
- 1-Construction
- 2-Construction
- 3-Advanced
- 4-Box

Specifications:
- Length: 7" (17.7 cm)
- Weight: 9.1 oz (0.256 kg)
- Body Dia. 0.60" (15 mm)
- Tube Dia. 0.50" (13 mm)
- Tuttle Recovery

Recommended Engines:
- 1-Grande 64-1.5 DLE
- Use 6-200-1 or 1-300-1 for best flights

Estes Induction Cover
Astron Scout

Design by Estes Industries
Drawn by Peter Alway

1/16" Steel Wire

.015" Brass Wire

3/16" Balsa

Gauze Reinforcing
Classic Plan

Astron

Scout

Design by Estes Industries
Drawn by Peter Alway
SCOUT
ESTES K-1, #1201

SOURCE: MEASUREMENTS FROM ASSEMBLED KIT

REAR VIEW:
ADDITIONAL GAUZE ALONG LENGTH OF RETAINER HOOK SECURES IT TO THE BODY TUBE

GLUE-SOAKED GAUZE REINFORCEMENT ON BOTTOM 1 1/8" OF BODY TUBE

3 1/4" (BT-20)

RETAINER HOOK 4 5/8" (ON OPPOSITE SIDE)

PINS 3/16" THICK
Astron Scout

By looking at the photo of the finished model in the 1963 catalog compared to the photo in the 1970 catalog the following should be noted:

1) The nose cone seems blunter on the older version.
2) The body tube on the older version had 3 vent holes.
3) The fins are swept tighter on the old version.

The drawings by Peter Alway seem to be accurate for the older version. The other drawing looks like it's accurate for the newer version.